Semestres: I

Programa Analítico de Disciplina

ELT 426 - Sistemas Flexíveis na Transmissão em CorrenteAlternada

Departamento de Engenharia Elétrica - Centro de Ciências Exatas e Tecnológicas		
Catálogo: 2019		
Número de créditos: 4		
Carga horária semestral: 60h		
Carga horária semanal teórica: 4h		
Carga horária semanal prática: 0h		

Não definidos

Ementa

Carregamento de linhas de transmissão. Compensação de linhas de transmissão. Controladores FACTS. Controlador unificado de potência (UPFC) (IPFC). Aplicação de SVC e TCSC em sistemas de transmissão de 500kV. Visita técnica.

Pré e co-requisitos
ELT 222

Oferecimentos obrigatórios
Não definidos

Oferecimentos optativos		
Curso	Grupo de optativas	
Engenharia Elétrica	Geral	

ELT 426 - Sistemas Flexíveis na Transmissão em CorrenteAlternada

Conteúdo						
idade	Т	Р	ED	Pj	Тс	
1. Carregamento de linhas de transmissão 1.1 Parâmetros de linhas 2.2 Características da transferência de potência ativa 3.3 Limites da capacidade da linha de transmissão 4.4 Potência reativa na linha de transmissão 5.5 Estabilidade em estado permanente e a característica do ângulo de potência 6.6 Curvas de St Clair 7.7 Curvas PxV e Pxd	10h	Oh	Oh	Oh	10	
 2. Compensação de linhas de transmissão 1.1 Compensação série e em derivação (shunt) utilizando elementos passivos 2.2 Compensação utilizando conversores estáticos 3.3 Transferência de potência e compensação de reativo 4.4 Transferência de potência ativa e compensação shunt 5.5 Transferência de potência e compensação série 	10h	Oh	Oh	Oh	10	
3. Controladores FACTS 1.1 Introdução 2.2 Principais controladores FACTS 3.3 Princípio de funcionamento dos principais controladores FACTS (TCSC, UPFC, ASVC) 4.4 Objetivos dos controladores série 5.5 Controladores chaveados 6.6 Controladores tipo série impedância variável 7.7 Controladores avançados	10h	Oh	Oh	Oh	10	
4. Controlador unificado de potência (UPFC) (IPFC) 1.1 Introdução 2.2 Controlador de fluxo de potência unificado 3.3 Princípios básicos de operação 4.4 Sistema de controle básico de potência ativa e reativa 5.5 Controle de fluxo de potência entre linhas 6.6 Características e princípios básicos de operação 7.7 Considerações de aplicação	10h	Oh	Oh	0h	10	
5. Aplicação de SVC e TCSC em sistemas de transmissão de 500kV 1.1 Estudo de casos 2.2 Avaliação em regime permanente do sistema Milagres ? Banabuiú (Ceará)	14h	0h	0h	0h	14	
6. Visita técnica	6h	0h	0h	0h	6ł	
Total	60h	0h	0h	0h	60	

(T)Teórica; (P)Prática; (ED)Estudo Dirigido; (Pj)Projeto; Total(To)

A autenticidade deste documento pode ser conferida no site https://siadoc.ufv.br/validar-documento com o código: B5RV.PKGG.HEZD

Planejamento pedagógico			
Carga horária	Itens		
Teórica	Não definidos		
Prática	Não definidos		
Estudo Dirigido	Não definidos		
Projeto	Não definidos		
Recursos auxiliares	Não definidos		

ELT 426 - Sistemas Flexíveis na Transmissão em CorrenteAlternada

Bibliografias básicas		
Descrição	Exemplares	
Campos, J. C. C. Matrizes de transformação reais aplicadas as linhas de transmissão de circuito duplo. Tese de Doutorado. Universidade Estadual de Campinas, Campinas, 2009.	0	
El-Hawary, Mohamed E. Electrical energy systems. Crc Press, 2007.	0	
Hingorani, Narain G., and Laszlo Gyugyi. Understanding FACTS: concepts and technology of flexible AC transmission systems. Wiley-IEEE press, 2000.	0	
SONG, Y.H; JOHNS, A.T. Flexible ac Transmission Systems (FACTS). London: Institution of Electrical Engineers, 1999.	0	
Zhang, Xiao-Ping, Christian Rehtanz, and Bikash Pal. Flexible AC transmission systems: modelling and control. Springer Science & Business Media, 2012.	0	

Bibliografias complementares		
Descrição	Exemplares	
Adamson, Colin, and Narain Ghuriomal Hingorani. High voltage direct current power transmission. Garraway, 1960.	0	
Anderson, Paul M., and Aziz A. Fouad. Power system control and stability. John Wiley & Sons, 2008.		
Miller, Timothy John Eastham, and Charles Concordia. Reactive power control in electric systems. Vol. 2. New York: Wiley, 1982.	0	
Momoh, James A. Electric power distribution, automation, protection, and control. CRC press, 2007.	0	
Tleis, Nasser. Power systems modelling and fault analysis: theory and practice. Newnes, 2007.	0	